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We have observed karyotypic changes involving the gain of
chromosome 17q in three independent human embryonic
stem (hES) cell lines on five independent occasions. A gain

of chromosome 12 was seen occasionally. This implies that
increased dosage of chromosome 17q and 12 gene(s) provides
a selective advantage for the propagation of undifferentiated
hES cells. These observations are instructive for the future
application of hES cells in transplantation therapies in which
the use of aneuploid cells could be detrimental.

Human embryonic stem cells have been cultured for extended periods
while retaining a diploid karyotype!=. They are strikingly similar to
human embryonal carcinoma (hEC) cells, the stem cells of teratocarci-
nomas, in that undifferentiated hEC and hES cells display comparable
expression profiles of genes and antigens*. However, hEC cells are ty-
pically aneuploid, showing distinctive chromosomal abnormalities
including the gain of chromosome 17q and the presence of one or
more isochromosomes 12p>~7. Long-term culture of mouse ES cells
can lead to a decrease in pluripotency and the gain of distinct chromo-
somal abnormalities3. Here we show that similar chromosomal
changes, which resemble those observed in hEC cells from testicular
cancer, can occur in hES cells.

A culture of hES cell line H7 (designated H7.S0; karyotype 46,XX)
was maintained in Sheffield for several months (see Supplementary
Methods online). The cells retained an undifferentiated hES cell phe-
notype (SSEA3+, TRA-1-60+, Oct4+, Sox2+)*?, an ability to differen-
tiate (judged by differentiation in vitro from embryoid bodies with the
formation of cells such as neurons and beating cardiac muscle cells)
and a normal karyotype. However, all the cells of a subline, H7.S6,
defrosted from an early freezing of H7.S0, had acquired chromosomal
changes by passage 60 (about 6 months): the cells all had a 46,XX,
der(6)t(6;17)(q27;q1) karyotype. These cells expressed markers of
undifferentiated hES cells and retained an ability to differentiate in
culture. The translocation involved gain of the complete long arm of

chromosome 17, translocated to 6q, without apparent loss of chromo-
some 6q or 17q material; the cells were trisomic for 17q (Fig. 1). A sub-
group of cells also had trisomy 12.

Another diploid H7 subculture (H7.S9) was reestablished from a
different early freezing. After four months, all the cells had become tri-
somic for the whole of chromosome 17. Over the same period, we
studied a different hES cell line, H14 (designated H14.S0; 46,XY). This
line was diploid, but a subsequent culture from a frozen stock, H14.59,
also became trisomic for chromosome 17. To further explore the rec-
urrent gain of chromosome 17, we established yet another culture of
H7 cells (H7.S14) from another early freezing. Interphase fluorescence
in situ hybridization (FISH) analysis did not detect any cells with tri-
somy 17. After 22 passages (2 months), karyotyping revealed trisomy
17; interphase FISH indicated trisomy 17 in 76% of the cells and, after
an additional 17 passages, in 95% of the cells.

In Sheffield, a gain of chromosome 17q was common to all hES cells
in which chromosomal changes were detected, arising on four inde-
pendent occasions in two different hES cell lines. A gain of chromo-
some 12 was also seen, but only in subpopulations of cells; no other
consistent karyotypic changes were noted. Because the differentiated
derivatives of ES and EC cells have limited growth potential, genetic
changes that promote stem cell self-renewal at the expense of differ-
entiation are likely to provide strong selective growth advantages for
the variant sublines in which they occur. Thus, increased dosage of
chromosome 17q gene(s) may provide hES cells with some strong
advantage for maintenance in vitro or may inhibit apoptosis, and the
evolution of hES cells in culture may parallel that of hEC cells in
tumors. Indeed, when a subline of H7 carrying the t(6;17) transloca-
tion was cultured on Matrigel without fibroblasts or fibroblast-
conditioned medium for over 25 passages, a clone of these feeder-
independent H7 cells was found to carry an isochromosome, i(12p),
the characteristic karyotypic marker of hEC cells (Fig. 1).

The original reports of hES cells indicated a stable diploid kary-
otype!. However, recently we have also seen karyotypic changes in H1
and H14 hES cell lines at the University of Wisconsin (Table 1). Mostly
these changes involve gain of chromosome 12, although in one case
amplification of part of chromosome 17q, together with a range of
other changes, was seen. Why gain of chromosome 17 predominates in
one laboratory and chromosome 12 in the other is unclear. Although
initial culture protocols were, in principle, the same, the karyotypic
changes observed in the Wisconsin cells were obtained after clonal
selection or efforts to culture cells in the absence of feeders. Whether
similar changes will be identified in other lines and other laboratories
remains to be established.

The mechanism by which gain of chromosome 17q confers pro-
liferative advantage is a matter of conjecture. In germ cell tumors,
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Table 1 Examples of karyotypic changes in hES cells seen at the
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Figure 1 Karyotypic changes affecting chromosomes 17 and 12 in sublines
of H7 hES cells. (a) The relationship between the different cultures of H7
and H14 cells that were maintained in Sheffield. H7 was originally cultured
from a vial frozen in passage 15 at the University of Wisconsin. Cultures
were then provided with an ‘S’ number to designate subsequent passages in
Sheffield. Subcultures derived from subsequent freezings were designated
by the ‘S’ number the cells had reached at the time of freezing. Different
cultures were frozen and karyotyped as shown (see Supplementary Figure 1
online). A minimum of 20 metaphase spreads was analyzed for all karyo-
types. The latter two H7.S14 karyotypes were confirmed by analyzing

200 interphases with FISH. (b) The derivative chromosome, der(6)t(6;17),
present in the subline of H7 showing, respectively, the chromosome stained
by G-banding, M-FISH for chromosome 17q marker, subtelomere probes for
chromosome 6 and locus-specific probes (HERZ2, also known as ERBB2)
for chromosome 17q. These data indicate the presence of a complete extra
copy of 17q, translocated to chromosome 6, apparently without loss of
chromosome 6 material. (c) An isochromosome 12p present in a clonal
subline of the H7 cells adapted to culture on Matrigel in the absence of
feeders or feeder-conditioned medium (subline H7.S6-5ANF), shown by
G-banding and by FISH using a 12p subtelomeric probe. These cells
retained the der(6)t(6;17)(q27;q1) chromosome.

overexpression of GRB7, located on chromosome 17q, is a common
feature of hEC cells’. Gain of 17q is also associated with neuroblas-
toma!?, and genes implicated in apoptosis and differentiation are sited
on 17gq; for example, Survivin, encoding an inhibitor of apoptosis, lies
at 17q25 (ref. 11). STAT3 and GRB2, the homologs of which regulate
self-renewal and differentiation in mouse ES cells'?, are encoded by
human 17q. With respect to chromosome 12, Nanog, a master con-
troller of pluripotency in murine ES cells'3, lies on the boundary of the
minimal 12p amplicon associated with hEC cells'4. Karyotypic change
occurs in mouse ES cells, correlating with a reduced ability to colonize
the germ line in chimeric mice®. These changes commonly affect chro-
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self-renewal, our observations of chromosomal changes in hES cells
suggest that caution is warranted when designing culture conditions,
and especially feeder-free conditions, for the cells; in vitro evolution
may select for adaptive genetic changes. The occurrence and potential
detrimental effects of such karyotypic changes will need to be consid-
ered in the development of hES cell-based transplantation therapies.

Note: Supplementary information is available on the Nature Biotechnology website.
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