






impact of infection was attenuated compared to findings in organoid-derived cells
(Fig. S6B to D). These results suggest that the response to the virus depends, in part, on
the physiologic microenvironment of the cells. Thus, the impact of ZIKV on DNA
methylation does not appear to be cell autonomous but rather might reflect a blending
of the intrinsic cellular effects with secondary effects from heterogeneous cell-cell
communication with neighboring cells. A subtle but possibly important contributing
factor to the divergence seen between the two systems might also be an intrinsic
variance in cell states as it arises as a consequence of the different differentiation
environments. It can be anticipated that upon ZIKV-induced neuroinflammation, reac-
tive astrocytes release cytokines and chemokines, and stressed or injured neurons will
emit danger signals as part of an innate immune reaction (19).

ZIKV-induced DMRs are linked to neurodevelopmental and psychiatric disor-
ders. To relate the DMRs caused by ZIKV infection to neurologic disease, we began by
searching for a gene signature that might define microcephaly, the hallmark birth
defect associated with the virus. This analysis identified 53 genes in the proximity of
DMRs that were significantly related to a microcephalic phenotype (Fig. 3C) (P � 0.001

FIG 2 ZIKV infection induces DNA methylation changes in human cerebral organoid-derived astrocytes, neurons, and neural progenitor cells. (A) Schematic
of the samples used for reduced representation bisulfite sequencing (RRBS). (B) Immunofluorescence staining of ZIKV- and mock-infected multicellular 2D
cerebral organoid cultures to detect ZIKV (strain MR766) infection (4G2, anti-flavivirus group E antigen, green) in neurons (DCX, red), astrocytes (GFAP, red), and
neural progenitor cells (PAX6, red). Bar, 100 �m. DAPI, 4=,6-diamidino-2-phenylindole. (C) Principal-component analysis based on the mean methylation levels
of 100-bp tiles. (D) Distribution of methylation levels in samples with or without ZIKV (strain MR766) infection, as indicated. (E) Heat maps of differentially
methylated 100-bp tiles in each cell type (q value of �0.05 and methylation difference greater than 0.2). NPC, neural progenitor cells.
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by Fisher’s exact test), attesting to the strength of our methylome analysis in the
cerebral organoid model.

Apart from microcephaly, ZIKV has been linked to conditions such as cerebral palsy,
intellectual disabilities, and epilepsy (20). Because prenatal virus-like immune activation

FIG 3 Disease ontology of genes associated with ZIKV-induced changes. (A) Numbers of hypomethylated and hypermethylated DMRs
near gene loci (5,000 bp upstream to 500 bp downstream of transcription start sites [TSS]) per cell type. (B) Examples of
hypomethylated (KDM6A, USP9X, and GSAP) and hypermethylated (GDI1, EBF3, and TWIST2) gene loci. Gray, areas with nonsignificant
sequencing signal; red dashed line, differentially methylated region. (C) Venn diagram showing the number of affected gene loci in
each cell type after ZIKV infection (strain MR766) and their overlap with genes defined by the human phenotype ontology for
microcephaly (MCPH; total overlap of 53 out of 422 MCPH-related genes). (D) Dot plot of top DisGeNET disease categories that
correlate with differentially methylated gene loci (5,000 bp upstream to 500 bp downstream of transcriptional start site). astro,
astrocytes; neuro, neurons; npc, neural progenitor cells.
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can trigger stable DNA methylation changes in mouse brains that can underlie behav-
ioral and cognitive deficits in offspring (8), we asked if our DMRs could be related to
neurological diseases as well. Thus, we used the DisGeNET disease ontology algorithm
(21) to examine all DMRs identified near transcription start sites (Fig. 3A). The top-
ranked disease categories (Fig. 3D) included conditions such as mental retardation as
well as intellectual and developmental disorders that showed strong correlations in at
least two of the three cell types that we investigated. There were further associations
of affected gene loci in astrocytes and neural progenitors with epilepsy and attention
deficit hyperactivity disorder, respectively, consistent with published reports in which
astrocytic and neuronal impairments have been associated with these conditions (22,
23). Our analysis also revealed correlations with craniofacial abnormalities and congen-
ital facial anomalies, as well as FG syndrome and Aicardi syndrome, which are charac-
terized by the partial or complete absence of the corpus callosum, a condition that has
been described together with microcephaly in congenital ZIKV syndrome (24, 25).
Similar, though less explicit, associations were apparent from our DisGeNET analysis of
DMRs in pure cell populations (Fig. S6E).

Especially provocative were the links between differentially methylated genes and
neuropsychiatric disorders, in agreement with reports where other fetotrophic viruses
were also thought to induce these diseases (26–28). To pursue this lead further, we
reexamined our DMR data using PsyGeNET, a platform designed to reveal genetic links
to eight classes of psychiatric disorders (29) (Fig. 4 and S6F). As many as 10% of the
genes in the pool used to generate Fig. 3 were implicated in susceptibility to schizo-
phrenia, bipolar illness, or other diseases covered by this platform (Fig. 4 and S6F). This
finding indicates that microcephaly and other gross brain abnormalities may be only
the tip of the iceberg in babies born after gestational ZIKV infection.

DISCUSSION

A substantial proportion of the babies with ZIKV infection who were born with
anatomic brain abnormalities can be expected to develop cognitive, behavioral, and
mental health problems later in life and therefore are beginning to be closely moni-
tored for these complications (30). Of growing concern are the infants who have been
exposed to ZIKV but lack any clinical evidence of the infection at birth. Our findings
predict that many of these individuals may have changes in their DNA methylome that
could ultimately affect the expression of key genes involved in a spectrum of neuro-
psychiatric disorders. Our findings, together with recent clinical reports describing a
causal relationship between ZIKV infection in adolescents and severe depression (31)
and psychosis (32), support the hypothesis that ZIKV might directly trigger neuropsy-
chiatric and cognitive disease. Hence, while more is being learned about the conse-
quences of severe symptomatic ZIKV infection, our results reinforce the concern that
asymptomatic prenatal ZIKV infections could have long-term effects on neurodevelop-
ment, justifying further rigorous study to identify infected individuals and mechanisms
of disease induction.

We show in this report that ZIKV alters DNA methylation in developing brain cells.
Although the virus dampens DNA methyltransferase activity (5, 33), how it globally
alters specific DMRs remains unexplained and should shift our focus toward the direct
action of ZIKV proteins on chromatin. The observation that methylation changes are
more profound in a heterocellular organoid-derived environment than in pure neuronal
cells suggests that not only the virus itself but also the entire cellular and immunore-
active milieu contributes to the effects on DNA methylation. It remains open, however,
whether the methylation changes come first or whether the viral infection dysregulates
epigenetic regulatory genes prior to any epigenetic shift.

Although the Zika virus can directly eliminate developing brain cells (3, 5), the
altered DNA methylation pattern in surviving cells has the potential to drive a range of
neurological symptoms in babies born to infected mothers. It is interesting that 94% of
the Zika virus-related cases of microcephaly identified in a recent Brazilian outbreak
occurred in the most economically depressed region of northern Brazil (1); hence, an
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FIG 4 Correlation between neuropsychiatric disorders and genes affected by ZIKV-induced methylation changes. (A) Distribution of genes that
associate with PsyGeNET disease categories according to cell type (SI, substance induced; UD, use disorders). (B) Analyses of gene networks and their
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inadequate diet might render the fetus more vulnerable to methylation changes. If so,
nutritional supplementation could afford effective prophylaxis, a prediction requiring
validation in future in vitro and animal studies. Furthermore, different human genetic
ancestries shape the methylome in unique ways in response to environmental factors
such as tobacco smoke (34), and it may not come as a surprise if ethnic groups show
sui generis epigenetic patterns that translate into variable susceptibilities to ZIKV
infection. In that context, it appears noteworthy that the H9 embryonic stem cells that
we used to make brain organoids possess Caucasian ethnicity (35). Thus, it will be
interesting to see if infection of organoids derived from cells of Brazilian genetic
background might show even more severe methylation and gene expression changes
related to microcephaly or other neurological diseases and if nutritional supplements
can interfere with such changes.

Despite the fact that ZIKV first affected the African continent (African ZIKV lineage)
before its jump to Micronesia and widespread transmission in the Americas (Asian ZIKV
lineage), the issue of congenital infection and causality with microcephaly was discov-
ered only during the outbreak in Brazil. Many factors specific to the Brazilian population
have been proposed to explain this phenomenon, including socioeconomics, variability
in host genetics, virus strain-specific modifications, and cross-reaction of antibodies to
dengue virus with ZIKV that would result in intensified ZIKV-related symptoms such as
microcephaly by facilitating transplacental spread of the virus (36–38). However, a
World Health Organization ZIKV situation report, published in September 2016, de-
scribed a number of microcephaly cases in Guinea-Bissau, West Africa, that might have
been caused by in utero exposure to an African Zika virus lineage strain (39). Many
similarities, but also some experimental differences, have been reported for the African
and Asian lineage ZIKV strains (40, 41). In the work described here, we performed
experiments with the African lineage MR766 ZIKV strain and included additional
infection with the Asian lineage PRVABC59 strain in some of the experiments. Although,
upon infection with the two strains, similar conclusions could be made in our experi-
ments, we cannot rule out the possibility that some of the observations are specific to
the African lineage MR766 ZIKV strain, and so it will be intriguing to learn if different
ZIKV strains could influence the epigenetic impact of ZIKV infection. Until further
studies are performed, our results are most consistent with the hypothesis that prenatal
ZIKV infection could have extensive, long-term postinfectious consequences for aber-
rant neurodevelopment.

MATERIALS AND METHODS
Human cerebral organoid, neural stem cell, cortical neuron, and astrocyte cultures. Human H9

embryonic stem (WA09) cells were obtained from WiCell and maintained with standard protocols in
mTESR1 (Stem Cell Technologies). Cerebral organoids were generated and cultured in a bioreactor
according to a published protocol (42), except that Aggrewell 800 plates (Stem Cell Technologies) were
used for embryonic body formation. Prior to infection, cerebral organoids were dissociated with Accutase
(Innovative Cell Technologies) at 37°C for 10 min and grown for 7 days on growth factor-reduced
Matrigel-coated culture dishes (Corning) in cerebral organoid differentiation medium. Cultures were fed
every 3 to 4 days by replacing half of the medium.

Gibco H9 (WA09)-derived neural stem cells were cultured according to the manufacturer’s recom-
mendations. Briefly, cells were cultured as a monolayer on poly-L-ornithine (Sigma)- and laminin
(Invitrogen)-coated culture dishes in StemPro NSC serum-free complete medium (cells and culture
reagents were obtained from Thermo Fisher). Culture medium was changed every 2 days, and cells were
passaged at 90% confluence with TrypLE (for a maximum of 3 passages).

iCell hiPSC-derived human cerebral cortical neurons and hiPSC-derived human astrocytes were
acquired from Cellular Dynamics International (CDI) and handled according to the manufacturer’s
recommendations. Cerebral cortical neurons were seeded at a density of 1.25 � 105 cells/cm2 on
poly-L-ornithine- and laminin-coated culture dishes in complete maintenance medium (CDI); complete
medium changes were made after 24 h in vitro, and half of the medium was changed every 3 to 4 days.
Astrocytes were seeded at a density of 5.5 � 104 cells/cm2 on growth factor-reduced Matrigel-coated
culture dishes (Corning) in astrocyte medium: Dulbecco’s modified Eagle’s medium (DMEM), high

FIG 4 Legend (Continued)
association with psychiatric diseases. Included are all genes that were identified in at least one of the cerebral organoid-derived cell types. Yellow nodes
represent diseases; gray nodes represent genes.
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glucose, GlutaMAX, and pyruvate (Life Technologies) with 1� N-2 supplement (Life Technologies) and
10% fetal bovine serum (FBS; HyClone). Cells were given complete medium changes after 24 h in vitro
and subsequently fed every 2 to 3 days by replacing half of the medium. The cells were passaged once
with TrypLE, when they reached 90% confluence.

Immunofluorescence staining. Dissociated organoid cultures were grown on growth factor-
reduced Matrigel (Corning)-coated chambered coverslips and fixed with 4% paraformaldehyde (PFA) in
phosphate-buffered saline (PBS) for 10 min at room temperature. Whole cerebral organoids were fixed
in 4% PFA and processed for cryosectioning (42). For immunofluorescence staining, sections or cells were
immunoblocked and permeabilized in 0.25% Triton X-100 and 4% goat serum in PBS followed by
overnight incubation with primary antibodies in 0.1% Triton X-100 and 4% goat serum in the following
dilutions: TUJ1 (mouse; BioLegend catalog no. 801201), 1:500; PAX6 (rabbit; BioLegend catalog no.
901301), 1:100; glial fibrillary acidic protein (GFAP) (rabbit; Dako catalog no. Z0334), 1:500; doublecortin
(DCX) (guinea pig; Invitrogen catalog no. A-11075), 1:500; anti-flavivirus group E antigen 4G2 (mouse;
Millipore; catalog no. MAB10216), 1:200; anti-flavivirus NS5 (chicken, made in-house [14]), 1:500. Sec-
ondary antibodies consisted of Alexa Fluor 488, rabbit Alexa Fluor 594, chicken Alexa Fluor 555, and
guinea pig Alexa Fluor 568 conjugates (Invitrogen) and were used in dilutions of 1:200. Images were
taken with a Leica SP5 DMI inverted confocal microscope.

Virus production. Zika virus strains Uganda 1947 (MR766) and Puerto Rico 2015 (PRVABC59) were
grown on monolayers of Vero cells in Dulbecco’s modified Eagle’s medium supplemented with 2% fetal
calf serum and penicillin-streptomycin (Sigma) in T175 culture flasks. After 72 h, the culture supernatant
was collected and centrifuged (400 � g, 10 min) to remove cellular debris. The resultant virus suspension
was aliquoted and stored at �80°C until further use. Previous work (40) confirmed that the MR766 strain
used does not contain the reported mutations, including 4 to 6 codon deletions within the E protein,
acquired by serial passaging in mouse brains (43).

Manual antibody conjugation. One hundred micrograms of purified 4G2 antibody (Millipore;
catalog no. MAB10216) or in-house-produced and purified 4G2 antibody (36) was conjugated to Alexa
Fluor 488 with the Invitrogen antibody labeling kit (catalog no. A20181) according to the protocol
provided by the manufacturer.

Fluorescence-activated cell sorting strategy. Organoid-derived cell mixtures were stained for the
extracellular markers CD184, CD44, CD24, CD271, and CD15 to separate neural progenitors, astrocytes,
and neurons as described by Yuan et al. (17). Cell monolayers were dissociated with Accutase (Innovative
Cell Technologies), washed in PBS with 1% bovine serum albumin (BSA) and 2 mM EDTA, and stained
with the directly conjugated surface marker antibodies for 45 min at room temperature in the dark
(V450-conjugated anti-human CD15 [BD Biosciences; catalog no. 561584], BUV395-conjugated anti-
human CD24 [BD Biosciences; catalog no. 563818], peridinin chlorophyll protein [PerCP]-Cy5.5-
conjugated anti-human CD44 [BD Biosciences; catalog no. 560531], allophycocyanin [APC]-conjugated
anti-human CD184 [BD Biosciences; catalog no. 555976], and phycoerythrin [PE]-conjugated anti-human
CD271 [BD Biosciences; catalog no. 557196]). To distinguish ZIKV-infected from uninfected cells, cells
were washed, fixed with 2% paraformaldehyde for 5 min, permeabilized in PermWash buffer (BD
Biosciences), washed, and stained for 1 h with the in-house-conjugated Alexa Fluor 488-conjugated
monoclonal anti-flavivirus group antigen antibody (clone 4G2). Cells were washed once in PermWash
buffer and resuspended in PBS with 1% BSA for subsequent FACS or flow cytometry. Gates were first
applied to isolate single cells, after which they were sorted for CD271 and CD44. CD271� CD44� cells
were then further gated for CD184� to obtain cells with the astrocyte marker signature. CD271� CD44�

cells were further gated for CD184, CD24, and CD15 to separate neural progenitor cells (CD271� CD44�

CD184� CD24�) and neurons (CD271� CD44� CD184� CD24� CD15low).
RNA extraction and quantitative RT-PCR. RNA was extracted from thawed cell pellets with the

Direct-zol RNA miniprep kit (Zymogen) including DNase treatment according to the manufacturer’s
instructions. The WTA2 kit (Sigma) was used to generate a cDNA library according to the protocol
provided by the manufacturer (25 cycles), and PCR was performed with the PerfeCTa SYBR green FastMix
(Quanta Biosciences) using a Roche LightCycler 480.

DNA extraction. Cell pellets were thawed and resuspended in 300 �l lysis buffer (10 mM Tris, pH 8.0,
10 mM EDTA, 10 mM NaCl, 0.5% SDS, 1 mg/ml proteinase K, 50 �g/ml DNase-free RNase A) at 55°C
overnight. DNA was extracted with phenol-chloroform followed by NaCl-ethanol precipitation. Genomic
DNA was washed with 70% ethanol, air dried, and resuspended in 20 �l EB buffer (10 mM Tris-HCl, pH 8.5,
0.1 mM EDTA).

WGBS library construction. Genomic DNA (200 ng) was fragmented with a Covaris S2 sonicator
for 6 min with the 5% duty cycle, an intensity of 5, and 200 cycles per burst. The sheared DNA was
purified with the DNA Clean and Concentrator kit from Zymo Research according to the manufac-
turer’s recommendations. Bisulfite conversion of DNA was then conducted with the EZ DNA
Methylation-Gold kit (Zymo Research) according to the manufacturer’s protocol and eluted in 15 �l
low-Tris-EDTA (TE) buffer. The converted DNA was immediately processed, and WGBS libraries were
generated using the Accel-NGS Methyl-Seq DNA library kit (Swift Biosciences) according to the
manufacturer’s protocol. The libraries were sequenced for 100-bp paired-end reads on an Illumina
HiSeq 2500 sequencer.

RRBS and WGBS data processing and analysis. Raw sequencing reads were trimmed by 10 bp at
each end and aligned to the human genome build hg19/GRCh37 using BSMAP (44). Methylation levels
at CpGs were determined with the mCall package from MOABS (45). Only CpGs covered by 5 or more
reads were used for analysis. DMRs were identified by a two-sample weighted t test, and multiple-testing
correction was performed with the R q value package. For the 1-kb tiles, at least 5 CpGs were required
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to be covered at 5�. For the 100-bp tiles, at least 2 CpGs were required to be covered at 5�. The R
MethyAnalysis with the TxDb.Hsapiens.UCSC.hg19.knownGene package was used to associate genes
with DMRs. The R DOSE (46) package was used for disease ontology analyses. A background gene list for
enrichment analyses was generated by subjecting all defined tiles of the genome to the same annotation
criteria as the DMRs. To determine if ZIKV-induced methylation changes target distal enhancer elements,
we aligned the 818 identified DMRs with 1,837 curated human enhancers available through the VISTA
enhancer browser (https://enhancer.lbl.gov/). For psychiatric disease association analyses, the R
psygenet2r package was used. The human phenotype ontology gene set for microcephaly was retrieved
from the HPO browser (http://compbio.charite.de/hpoweb/showterm?id�HP:0000252). RNA-seq data for
ZIKV-infected hiPSC-derived cortical neural progenitors were retrieved from the work of Tang et al. (5);
epigenetic data for fetal brain were obtained from the NIH Epigenomics Roadmap Consortium (47).

Accession number(s). All data have been deposited in the Gene Expression Omnibus (GEO) under
accession number GSE109104.
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