
Cell Stem Cell

Short Article
Caspase Activity Mediates the Differentiation
of Embryonic Stem Cells
Jun Fujita,1,7 Ana M. Crane,1,7 Marlon K. Souza,1,7 Marion Dejosez,1 Michael Kyba,4 Richard A. Flavell,5

James A. Thomson,6 and Thomas P. Zwaka1,2,3,*
1Center for Cell and Gene Therapy
2Department of Molecular and Cellular Biology
3Department of Molecular Human Genetics

Baylor College of Medicine, Houston, TX 77030, USA
4Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
5Department of Immunobiology, Yale University School of Medicine and Howard Hughes Medical Institute, New Haven, CT 06520, USA
6The Wisconsin National Primate Research Center, University of Wisconsin, Madison, Madison, WI 53715, USA
7These authors contributed equally to this work.

*Correspondence: tpzwaka@bcm.edu

DOI 10.1016/j.stem.2008.04.001
SUMMARY

Embryonic stem cells (ESCs) are capable of indefinite
self-renewal while retaining the ability to differentiate
to any of the three germ layers that give rise to all
somatic cell types. An emerging view is that a core
set of transcription factors, including Oct4, Sox2,
and Nanog, form a robust autoregulatory circuit
that maintains ESCs in a self-renewing state. To ac-
commodate the capacity of such cells to undergo
germ layer-specific differentiation, we predicted a
posttranslational mechanism that could negatively
regulate these core self-renewal factors. Here we re-
port caspase-induced cleavage of Nanog in differen-
tiating ESCs. Stem cells lacking the Casp3 gene
showed marked defects in differentiation, while
forced expression of a caspase cleavage-resistant
Nanog mutant in ESCs strongly promoted self-re-
newal. These results link a major component of the
programmed cell-death pathway to the regulation
of ESC development.

INTRODUCTION

Embryonic stem cell (ESC) research holds remarkable promise,

yet the mechanisms by which these cells transition from pluripo-

tency to differentiation have been elusive. It now appears that

a small core set of transcription factors work together to maintain

the pluripotent state of ESCs (Bernstein et al., 2006; Boyer et al.,

2005, 2006; Lee et al., 2006). These transcriptional regulators,

including Oct4, Sox2, and Nanog, stimulate the expression of

genes controlling self-renewal while repressing genes that drive

differentiation. An emerging concept is that Nanog and other

core transcription factors form a tight autoregulatory circuit

that enables ESCs to remain stable in culture and ensures ex-

treme autonomy in proliferative decisions (Boyer et al., 2005;

Chickarmane et al., 2006). Thus, ESCs depend only marginally

on mitogenic stimuli typically required for somatic cells to prolif-
erate but stimulate their own growth through endogenous fac-

tors. This autonomy is best shown by the unique ability of

ESCs, injected into virtually any anatomical site in adult animals,

to form rapidly growing tumors called teratocarcinomas (Damja-

nov and Solter, 1974). How, then, do ESCs retain the capacity for

rapid differentiation? The most plausible mechanism, in our view,

would modify one or more core transcription factors posttransla-

tionally, allowing the ESCs to rapidly escape the constraints of

their self-renewal machinery.

Attractive candidates for the role of posttranslational modifier

of ESC function are the site-specific proteases of the pro-

grammed cell death system (Earnshaw et al., 1999; Thornberry

and Lazebnik, 1998). The cysteine protease Caspase-3 is espe-

cially notable because it not only cleaves vital proteins, but also

activates other caspases, such as Caspase-9, that have their

own targets. These proteases are very specific for particular

amino acid sequences, are highly regulated in their activities,

and, in some contexts, appear to influence the decision of cells

to differentiate (Arama et al., 2003; De Botton et al., 2002; De

Maria et al., 1999a, 1999b; Ishizaki et al., 1998), implying func-

tions other than the execution of cell-death programs. Here we re-

port thatcaspasesplay a critical role in ESCdifferentiation byneg-

atively regulating the self-renewal machinery of these stem cells.

RESULTS

Caspase Activity Increases after Induction
of ESC Differentiation
We first tested differentiating mouse ESC cultures for the pres-

ence of caspase activity. As shown in Figure 1A and Figure S1

available online, such activity began to increase very shortly after

the ESCs were stimulated with retinoic acid (RA) or plated in

differentiation medium. To exclude an effect from increased

apoptosis, we assayed the cultures for the percentage of cells

undergoing apoptosis, demonstrating essentially no increases

in this end point over 72 hr poststimulation with RA (Figure 1B).

To substantiate that the caspase activity peaks were associated

with cell differentiation and not programmed cell death, we gen-

erated a caspase activity reporter cell line (Caspsensor; Figure S2A)

in which enhanced yellow fluorescent protein (EYFP) could
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be seen in the cytoplasm as long as caspase activity was low

or absent but appeared in the nucleus when caspases were

active (Figure 1C). In their undifferentiated state, the ESCs

showed mainly cytoplasmic EYFP staining, but upon induction

of differentiation, the EYFP signal shifted to the nucleus in

most or an increased percentage of the ESCs (Figures 1C–1D),

Figure 1. Increased Caspase Activity in Mouse ESCs upon Induction

of Differentiation

(A) The R1 ESC line was stimulated with RA (1 mM) for the indicated times, and

Caspase activity was measured in an in vitro Caspase activity assay. The data

are means ± SD of triplicate experiments.

(B) The same ESC line was again exposed to RA for various times and the

mean (± SD) percentage of cells undergoing programmed cell death was de-

termined by counting apoptotic bodies. UV, ultraviolet light.

(C) ESCs expressing the Caspase sensor (Caspsensor) were stimulated with RA

(1 mM), fixed at the four indicated time points, and stained with an antibody

against a reporter protein (enhanced yellow fluorescent protein, EYFP). Mainly

cytoplasmic staining indicates low Caspase activity, while mainly nuclear

staining typically indicates increased Caspase activity. Immunofluorescence

images (403) were taken from representative fields. Although a shift of the sig-

nal from the cytoplasm to the nucleus is apparent at 12 hr, the cells did not

show any signs of apoptosis. Cells treated with stausporine at 6 hr served

as positive controls. Scale bar, 10 mm.

(D) Similar experimental setting as in (C), except that the mean percentage of

cells with mainly cytoplasmic or nuclear staining was determined.

(E) Western blot analysis of nuclear lysates isolated from mouse ESCs after

stimulation with RA for the indicated times. The blotted membrane was probed

with an antibody against PARP-1. The uncleaved form of PARP-1 is apparent

at the earlier poststimulation times, with the cleaved form (85 kDa fragment)

appearing after 24 hr, indicating PARP-1 cleavage.

(F) Immunostaining of a mouse ESC colony stimulated with RA or incubated

with leukemia inhibitory factor (LIF) for 2 days. The antibody used specifically

recognizes the 85 kDa form of PARP-1. Magnification, 403.
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indicating the presence of caspase activity. Importantly, none

of the caspase-positive cells appeared to be undergoing pro-

grammed cell death, as they lacked the classical features of nu-

clear condensation, nuclear fragmentation, and membrane bleb-

bing (data not shown). Western blot analysis revealed marked

differences in the sizes of the EYFPs, indicating that the reporter

protein had indeed been cleaved by caspases (Figure S2B). We

attribute the slight discrepancy in the kinetics of caspase activity

shown in Figures 1A and 1D to the different cell densities re-

quired for the respective assays. Finally, we asked if PARP-1,

a recognized caspase target during the execution of apoptosis

(Lazebnik et al., 1994), might also be cleaved after induction of

differentiation. Western blot analysis and immunofluorescence

microscopy with PARP-1 antibodies revealed what appeared

to be cleaved PARP-1 (the p85 fragment) at 48 hr poststimulation

of ESCs (Figures 1E and 1F), suggesting that, as in cells under-

going apoptosis, PARP-1 was also cleaved by caspases during

differentiation. Thus, differentiating ESCs show increased cas-

pase activity that is not associated with programmed cell death.

Because many different caspases could have accounted for

the increases in caspase activity seen in our differentiating

ESC cultures, we performed a western blot analysis for active

caspases in protein lysates from these cultures. Using anti-

bodies against five major caspases, we identified active Cas-

pase-3 in the lysates (Figure 2A) but failed to detect other effec-

tor cysteine proteases (data not shown). To demonstrate the

functional relevance of Caspase-3 to ESC differentiation, we first

exposed the cells to the caspase-blocking peptide VAD and

induced differentiation with RA. This treatment clearly inhibited

ESC differentiation, although the block was not complete (Fig-

ures 2B and 2D, left). Thus, while important for differentiation,

Caspase-3 activity may not have been the sole factor contribut-

ing to this process. Alternatively, the VAD peptide may not have

fully inactivated the protease.

Caspase-3 Knockout ESCs Possess
a Differentiation Defect
To substantiate a requirement for Caspase-3 activity in ESC dif-

ferentiation, we generated both homozygous and heterozygous

lines of Casp3 knockout ESCs (Figure S3A). Deletion of the

Casp3 locus lacked any discernible effect in undifferentiated

ESCs; however, when exposed to RA, the Casp3�/� ESCs

showed an obvious delay in differentiation compared with

Casp3+/� cells (Figures 2C and 2D, right). Similar results were

obtained when the ESCs were induced to differentiate as embry-

oid bodies (Figure S3B). As in the caspase blocking experiment,

more than 25% of the Casp3�/� ESC colonies showed apprecia-

ble signs of differentiation after 5 days, while a substantial pro-

portion of the colonies remained either completely undifferenti-

ated (42%) or only partially differentiated (31%). Quantification

of Oct4 expression in Casp3�/� ESCs by PCR (Figure S3C and

S3D) showed a reduction in this transcription factor with time

after differentiation, reinforcing the idea that a differentiation

delay is associated with the absence of this protease in ESCs.

We also injected Casp3+/� and Casp3�/� ESCs into immuno-

compromised mice, observing tumor formation at the injection

sites 10–14 days later in both experimental groups. Histological

examination of the tumors revealed differentiated cells from all

germ layers in mice injected with the Casp3+/� ESCs, in contrast



Cell Stem Cell

Caspase Activity in Embryonic Stem Cell
to the mainly undifferentiated or immature cells in Casp3�/�

ESCs (Figure 2E; Figure S4). Taken together, the caspase-block-

ing and Casp3 knockout data support direct involvement of

Caspase-3 in ESC differentiation.

If Caspase-3 indeed promotes the differentiation of ESCs, it

should be possible to demonstrate this effect by modulating

levels of the active protease. We therefore made targeted inser-

tions of cDNAs encoding a constitutively active (Casp3rev) or

mutated (mCasp3rev) form of Caspase-3 upstream of the

Figure 2. Caspase-3 Is Increased during Differentiation and Is

Essential for Proper Differentiation of ESCs

(A) Western blot analysis of protein lysates from ESCs stimulated to differenti-

ate with RA for the indicated times. The western blot membranes were probed

with an antibody that specifically recognizes only active Caspase-3. MEF,

mouse embryonic fibroblasts.

(B) Alkaline phosphatase staining of ESC colonies stimulated with RA (1 mM/ml)

or coincubated with RA and the pan-Caspase blocking peptide VAD.fmk

(100 mM) after 3 days. Cells incubated with leukemia inhibitory factor (LIF)

served as controls. The majority of colonies lost staining due to differentiation,

whereas coincubation with VAD prevented differentiation. Magnification, 103.

(C) Casp3 heterozygous (+/�) and knockout (�/�) ESCs were stimulated with

RA (1 mM) for 3 days and stained for alkaline phosphatase. Casp3+/� ESCs dif-

ferentiated, whereas the majority of Casp3�/� ESCs did not (103). Controls

were cells incubated without LIF.

(D) Left: quantification of colonies shown in (B) as described in the Experimen-

tal Procedures. Mean values are shown. Right: quantification of colonies

shown in (C). Mean values are shown.

(E) Casp3+/� and Casp3�/� ESCs were injected into immunocompromised

nude mice, and the resultant tumors were analyzed histologically. Typical

aspects of Casp3+/� and of Casp3�/� tumors included derivatives from all

three germ layers within a teratoma or immature and undifferentiated cells,

respectively.
HPRT locus of A2lox ESCs; these cDNAs were under the control

of a tetracycline-inducible promoter (Figure S5A). Doxycycline

induction of higher levels of inducible Caspase-3 in ESCs stimu-

lated differentiation, coinciding with a reduction of Nanog and

Oct4 levels, an increase in the expression of miscellaneous dif-

ferentiation factors, and an obvious change in cell morphology

associated with differentiation (Figures 3A–3C). Whether such

stimulation favors differentiation to a particular cell type (e.g., en-

doderm) or simply releases ESCs from the self-renewal machin-

ery to be stimulated by other extrinsic or intrinsic signals required

for cell-fate commitment is unclear.

Nanog Is Cleaved upon Induction of Differentiation
To identify the differentiation-specific molecular targets of Cas-

pase-3 in mouse ESCs, we developed an in vitro Caspase-3

cleavage assay and used it to determine the cleavage of Sox2,

Oct4, and Nanog transcription factors, all of which maintain

ESCs in a self-renewing state. Caspase-3 cleaved human (h)

Nanog in vitro (Figure 4A), while Sox2 and Oct4 remained

uncleaved (data not shown). Examination of the hNanog amino

acid sequence revealed conserved residues at position 69 and

at position 70 between the N-terminal transcriptional transacti-

vator (Pan and Pei, 2003) and the homeodomain (Figure 4A)

that likely serve as the Caspase-3 cleavage site. Indeed, when

a single amino acid in this putative recognition sequence was

mutated (yielding D69E hNanog), Caspase-3 was no longer

able to cleave the protein in vitro (Figure 4A). We also noted

that mouse (m) Nanog has a single amino acid substitution

(D > G) at position 64 that is three bases upstream of the Cas-

pase-3 cleavage site, a modification that could decrease the

ability of Caspase-3 to cleave mNanog. An in vitro Caspase-3

substrate affinity assay revealed that the cleavage site in mNa-

nog (GSPD) was still targeted by Caspase-3 (Figure S6B). How-

ever, after performing the same in vitro cleavage assays as used

with hNanog, we observed very little or no cleavage of recombi-

nant mNanog by Caspase-3 (Figure S6A). To determine whether

both hNanog and mNanog and their corresponding mutants are

cleaved in differentiating ESCs in vivo, we studied all four con-

structs in ESCs treated with RA (Figure 4B). Western blot analy-

sis revealed cleavage of both wild-type hNanog and wild-type

mNanog, but not their mutant forms harboring modified caspase

cleavage sites (aa 67 to 68 in mNanog and aa 69 to 70 in hNanog)

(Figure 4B). In addition, western blot analysis with antibodies

against endogenous Nanog detected a smaller band at 24 and

36 hr postinduction that corresponded to the cleaved form of

Nanog (Figure 4C). Thus, given the apparently reduced activity

of Caspase-3 toward mNanog in vitro compared with its effective

cleavage of this transcription factor in vivo, we hypothesized that

another, Caspase-3-dependent protease may function with

Caspase-3 to modify the regulatory activity of mNanog. By

screening a panel of caspases for their ability to cleave mNanog

in vitro (Figure 4D, left), we identified Caspase-9 as the most

likely candidate for this role (Figure 4D; Figure S6C). Indeed,

others have shown that the activity of Caspase-9 can be drasti-

cally enhanced either by active Caspase-3 (Zou et al., 2003) or by

Procaspase-3 (Yin et al., 2006), supporting an important contri-

bution of Caspase-9 to Nanog cleavage in ESCs.

If Nanog is indeed one of the principal targets of Caspases in

ESCs, its cleavage should have profound effects on whether the
Cell Stem Cell 2, 595–601, June 2008 ª2008 Elsevier Inc. 597
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cells remain in a state of pluripotency or differentiate. To test this

prediction, we again generated ESCs harboring cDNA coding

for hNanog or D69E, the caspase cleavage-resistant form of

hNanog targeted upstream of the HPRT locus under the control

of a tetracycline-inducible element (Figures S7A and S7B).

Importantly, the expression of induced hNanog reached levels

comparable to those of endogenous Nanog (Figure S7C).

ESCs expressing the D69E form of hNanog had a clear prolifer-

Figure 3. Ectopic Activation of Caspase-3 Activity in ESCs Leads to

Differentiation
ESCs carrying a constitutively active form of Casp3 gene (Casp3rev) or a

mutated version (mCasp3rev) under the control of a tetracycline-inducible ele-

ment were stimulated with doxycycline at increasing concentrations. (A) West-

ern blotting and detection of Oct4 and Nanog were then performed. Both Oct4

and Nanog disappeared when the expression of Casp3rev, but not mCasp3rev,

increased. WT, wild-type. (B) ESCs show clear morphologic signs of

differentiation when Casp3rev, but not mCasp3rev, expression is increased.

(C) RT-PCR of Oct4, Nanog, and differentiation markers. Both Oct4 and Nanog

were downregulated when expression of Casp3revI, but not mCasp3rev, was

increased, whereas expression of the differentiation markers Bmp2, Laminin

B1, and Gata4 increased.
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ative advantage over cells with the wild-type allele when cultured

under conditions that promote differentiation (Figures 4E and

4F). They also lacked evidence of morphological changes, in

contrast to ESCs carrying the wild-type form of Nanog

(Figure S7D). To assess the antidifferentiation effects of caspase

cleavage mNanog, we plated ESCs transfected with wild-type

and D67G (cleavage-resistant) mNanog at clonal densities and

analyzed colony formation 3 days later. The vast majority of col-

onies expressing the cleavage-resistant form of mNanog ap-

peared morphologically unaffected and were positive for alkaline

phosphatase, whereas a significantly lower number of colonies

expressing wild-type mNanog consisted of undifferentiated,

alkaline phosphatase-positive cells (Figure 4G). These observa-

tions support the hypothesis that caspase-mediated cleavage of

Nanog promotes ESC differentiation.

DISCUSSION

Our findings suggest that ESCs exploit caspases for rapid and

specific deactivation of Nanog, thus disrupting the autoregula-

tory circuit that otherwise preserves pluripotency in these cells.

They indicate further that Caspase-3 plays a dominant role in

this negative regulation by acting directly on Nanog or interacting

as a cofactor with Caspase-9, which then deactivates the tran-

scription factor. The action of caspases on Nanog appears to

separate the N-terminal domain from the homeodomain, leading

to the destabilization and subsequent degradation of the protein.

From our experiments, it is clear that both human and mouse

Nanog are cleaved by caspases, and therefore, it is likely that

both of them are completely interchangeable with regard to cas-

pase-mediated cleavage during the differentiation of ESCs. That

the caspase cleavage-resistant forms of Nanog have a signifi-

cantly stronger antidifferentiation effect in ESCs than does wild-

type Nanog firmly suggests that caspase-mediated cleavage of

endogenous Nanog plays a critical role in ESC differentiation.

The link we have identified between ESC differentiation and

programmed cell death helps to explain several poorly under-

stood observations on these ostensibly distinct processes,

both in vitro and in the early embryo. For instance, some compo-

nents of the cell-death system, such as Bcl-2, protect ESCs not

only from apoptosis but also from differentiation (Yamane et al.,

2005), while p53 has been shown to be directly involved in both

the control of cell proliferation and apoptosis and the differenti-

ation of ESCs (Lin et al., 2005). Moreover, other proteolytic com-

ponents of ESCs, such as the proteasome, appear to have direct

roles in the control of stem cell self-renewal (Szutorisz et al.,

2006). Future studies will need to address the question of

whether caspase activity indeed actively promotes differentia-

tion, as our data suggest, or perhaps functions as part of a mech-

anism for the selective elimination of undifferentiated cells. In

either case, the net outcome—cell differentiation—would be the

same.

Selective targeting of Nanog by caspases is consistent with

evidence implicating this transcription factor as a ‘‘master’’ reg-

ulator of the pluripotent state (Chambers et al., 2003; Ivanova

et al., 2006; Mitsui et al., 2003). However, given the remarkable

complexity of the pathways controlling cell death and differenti-

ation, we find it difficult to imagine how Caspase-3, acting alone

or in collaboration with Caspase-9, could be solely responsible
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Figure 4. Caspases Cleave Nanog in ESCs

(A) Top: in vitro-translated hNanog, but not its

D69E mutant, is cleaved by Caspase-3. Bottom:

proposed caspase cleavage site at position 69,

separating the N-terminal domain of Nanog from

the rest of the protein.

(B) Top: western blot showing expression of

hNanog and mutant hNanog with or without a mu-

tation at position 69 (D69E) that obviates cleavage.

The results represent ESCs transfected with hNa-

nog or D69E hNanog in cultures treated with RA (1

mM) or untreated. After induction of differentiation,

cleaved hNanog appeared as a 27 kDa band that

was not visible when the cells were transfected

with the mutated form of hNanog. Bottom: western

blot showing expression of hNanog and mNanog

and mutant hNanog and mNanog carrying

a mutation at position 69 and 67, respectively

(D69E and D67G), that obviates cleavage. The re-

sults represent ESCs transfected with depicted

Nanog versions and treated with RA. Cleaved

hNanog and mNanog appeared as a 27 kDa

band that was barely visible when the cells were

transfected with the mutated forms of hNanog

and mNanog.

(C) Western blot analysis for endogenous mNanog

reveals the cleaved form of the protein after induc-

tion of differentiation with RA.

(D) In vitro caspase cleavage assay reveals that

Caspase-9 can effectively cleave in vitro-trans-

lated mNanog.

(E) Proliferation of ESCs harboring hNanog or

D69E hNanog and grown under normal conditions

with LIF or RA stimulation. Mean (±SD) levels of
3H incorporation in triplicate experiments indicate

a consistently greater proliferative advantage for

cells expressing the hNanog cleavage mutant.

(F) Proliferation of ESCs expressing D69E or wild-

type hNanog that were mixed 20:80 with EGFP-la-

beled ESCs. The percentage of unlabeled ESCs in

the mixture was determined during growth in the

absence of LIF. Cells carrying the caspase cleav-

age-resistant mutant (D69E hNanog) had a marked

growth advantage over control or hNanog-ex-

pressing cells. The data are means ± SD of tripli-

cate experiments.

(G) Mouse ESCs were plated at low densities (5000 cells/cm2) and transfected with wild-type mNanog, D67G mNanog (caspase cleavage-resistant Nanog), or

control plasmid (GFP) and cultured with or without LIF for 3 days. Tranfection with D67G mNanog substantially increased the number of undifferentiated

(AP-positive) colonies.
for the mediation of proliferation versus differentiation choices in

ESCs. We predict, instead, that other mediators of cell death

participate in this critical developmental transition, possibly by

targeting pluripotency factors other than Nanog. This hypothesis

is supported by the absence of any overt phenotype in the pre-

implantation embryos of Casp3 knockout mice (Kuida et al.,

1996; Woo et al., 1998).

Our results leave unanswered the major question of why Cas-

pase-3 activation during differentiation is limited and does not

self-amplify as seen during apoptosis. Potential mechanisms

for such control of caspase activity include subcellular localiza-

tion of the enzyme, the caspase activity level itself, phosphoryla-

tion or other forms of structural modification, as well as direct or

indirect interaction with protein inhibitors, such as IAPs. Given

that ESCs carrying the cleavage-resistant form of Nanog prolifer-

ate better than those with the wild-type allele, it seems reason-
able to suggest that the cleaved form of Nanog might exert

a dominant-negative effect on some of the normal functions of

Nanog.

A more comprehensive understanding of the molecular path-

ways controlling ESC self-renewal and differentiation, in particu-

lar the apparent molecular link between programmed cell death

and cell differentiation, would not only accelerate efforts to gen-

erate clinically relevant cell types from ESCs but may also facili-

tate the reprogramming of differentiated cells to enter a pluripo-

tent state (Okita et al., 2007), (Silva et al., 2006), for example, by

blocking caspase activity. We consider the affinity of Caspase-3

and Caspase-9 for the transcription factor Nanog to be a para-

digm for other potential caspase targets in ESCs; hence, it should

be possible to exploit the caspases in experimental screens to

identify other factors that regulate stem cell pluripotency. Finally,

the involvement of caspases in nonapoptotic pathways, as
Cell Stem Cell 2, 595–601, June 2008 ª2008 Elsevier Inc. 599
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demonstrated here and elsewhere (Arama et al., 2003; De Botton

et al., 2002; De Maria et al., 1999a, 1999b; Ishizaki et al., 1998),

suggests that efforts to block apoptosis via caspase inhibition

for therapeutic purposes may have much broader implications

than initially thought, especially for stem cells.

EXPERIMENTAL PROCEDURES

ESC Cultures

The mouse ESC lines used were as follows: D3 (from ATCC, no. CRL11632),

R1 (from Andras Nagy, Toronto), and E14Tg2a-derived A2lox (from Michael

Kyba, UT Southwestern Medical Center) Cells were typically used between

passages 10 and 20. A2lox ESCs express the reverse tetracycline transactiva-

tor from the endogenous Rosa26 locus and carry an insertion containing

a tetracycline response element, loxP-lox2272 sites and the neomycinD

ATG-resistance gene upstream of HPRT on the X chromosome. To generate

inducible derivatives, we subcloned cDNAs into the p2Lox targeting vector.

Cre/Lox recombination was used to insert p2Lox into the inducible locus as

described previously (Kyba et al., 2003). The medium contained 10% FBS

(Innovative Research, cat. no. IFBF-H) tested for toxicity to ESCs in a colony-

forming assay (Evans, 2004) that included Knockout DMEM (Invitrogen, cat.

no. 10829-018), 1x nonessential amino acids (Invitrogen, cat. no. 111140-050),

L-glutamine 1% v/v (Invitrogen, cat. no. 25030-081), 2-mercaptoethanol (3.5 ml

per 250 ml medium; Sigma, cat. no. M7522), LIF 1000 per ml (Esgro, cat. no.

ESG1107). Cells were routinely maintained on irradiated (8400 rad) mouse em-

bryonic fibroblasts (MEFs) derived from E14.5-old embryos (mouse strain CF1,

Charles River timed pregnant mice). For some experiments, ESCs were placed

onto 0.1% gelatin type A (Sigma, cat. no. G1890)-coated dishes and passaged

2 to 4 times before the experiment was carried out. For differentiation studies,

standard medium was replaced with medium containing 1 mM retinoic acid (RA,

Sigma, cat. no. R2625) without LIF or N2B27 medium (Ying et al., 2003).

In Vitro Caspase Cleavage Assay

Trypsinized ESCs (R1, 200,000; D3, 250,000) were plated into 6 wells contain-

ing normal ESC medium, and on the next day, the medium was changed to

1 mM RA differentiation medium. Cells were harvested with trypsin-EDTA

(Invitrogen, cat. no. 25300-054), and protein extracts were made in 0.1%

CHAPS buffer, pH 7.2 (50 mM HEPES; 150 mM KCl; 1x protease inhibitors

[Roche, cat. no. 1697498001]); 2 mM Na fluoride, and orthovanadate, respec-

tively, at specified time points. The CaspGlo (Promega, cat. no. G8091) kit was

used to directly measure caspase activity. Before determining caspase activ-

ity, we tested the system for variability within the dynamic range using re-

combinant caspase-3 (BD Bioscience, cat. no. 556471). The signal was mea-

sured with the Wallac 1429 VictorII instrument (Perkin-Elmer, Wellesley, MA).

Generation of Caspase-3 Knockout

ESCs were derived from E3.5-old mouse embryos. Briefly on day 1, caspase-3

homozygous (Kuida et al., 1996) and control C57/BL6 female mice were

injected i.p. with 5 IU of PMS (Calbiochem, cat. no. 367222). Forty-six hours

later, the female mice received an i.p. injection of 5 IU human chorionic

gonadotropin (HCG; Calbiochem, cat. no. 230734). Stimulated females were

placed into a cage with 8-week-old caspase-3-homozygous stud males.

Blastocysts were collected on day 3 postcoitum in the afternoon. The blasto-

cysts were placed onto irradiated mouse embryonic feeder cells and

incubated for 3 days in ESC medium, trypsinized, and replated. Colonies

apparent on day 7 were picked, expanded, and genotyped with use of the

following primers: mCasp3-S, TGTCATCTCGCTCTGGTACG; mCasp3-AS,

CCCTTTCTGCCTGTCTTCTG (PCR product SIZE 310 bp); Neomycin-S,

AGACAATCGGCTGCTCTGAT; Neomycin-AS, ATACTTTCTCGGCAGGAGCA

(PCR product size 260 bp); mOct4-S, GGCGTTCTCTTTGGAAAGGTGTTC;

mOct4-AS, CTCGAACCACATCCTTCTCT (PCR product size 312 bp); Actin-S,

GGCCCAGAGCAAGAGAGGTATCC, Actin-AS, ACGCACGATTTCCCTCTC

AGC (PCR product size 460 bp). For PCR, we used GoTaq green master

mix (Promega, cat. no. M7112) with the following program: 1 cycle at 95�C

for 3 min followed by 40 cycles with 95�C for 30 s, 58�C for 30, and 72�C for

30 sec for 30 s followed by one extension of 10 min at 72�C. We generated

two caspase-3 knockout cell lines (34A and 34B) and two control caspase-3
600 Cell Stem Cell 2, 595–601, June 2008 ª2008 Elsevier Inc.
heterozygote cell line (22A and 22B). All experiments were carried out with

these four cell lines and yielded essentially the same results.

Inducible Caspase-3 Cell Line Experiments

We used a constitutively active caspase-3 gene (Casp3rev) as described in

Srinivasula et al., 1998 and a mutated version of Casp3rev (C1635) as de-

scribed in Kamada et al., 1998. These active and inactive forms of caspase-

3 were derived from the plasmids pGEMCasp3rev (6730 bp) and pGEM

MutCas3rev (3867 bp). The caspase-3 inserts were cut out of their backbone

vectors with EcoRI, and the insert (874 bp) was cloned by blunt end ligation

into the pLoxP2 vector and digested with XhoI-SmaI (3549 bp). The vector

was coelectroporated with pSalk-Cre into 30 3 106 A172 cells (960 mF, 25 milli-

sec pulse). After electroporation, the cells were selected with G418 (400 mg/ml),

and individual clones were picked and subsequently expanded. For the differ-

entiation experiment, cells were plated into 6-well plates (1 3 105/well) and

stimulated with 1 mg/ml doxycycline (Sigma, cat. no. D9891) for 36 hr. They

were then harvested, and western blots for Oct4 (H-134 Santa Cruz, cat. no.

SC9081), Nanog (Abcam, cat. no. AB14959; Chemicon 1/1000), and beta-

tubulin (D10; Santa Cruz, cat. no. SC5274) were performed. Secondary anti-

bodies (dilutions 1/5000 and 1/10000) consist of Alexa-680 antirabbit (Molec-

ular Probes, cat. no. A21077) or IRday 800 antirabbit (Rockland, cat. no. 611-

131-121). The signal was detected with the Odyssey system.

Detection of Nanog Cleavage by Caspase-3 In Vitro

Human Nanog was obtained from ATCC (cDNA clone cat. no. 10806397; Im-

age Clone IDm no. 40004923; Gene Bank ID no. BC09827) and subcloned into

pCR-BlendII-TOPO (Invitrogen). The mutation D69E was introduced into

human hNanog with a site-directed mutagenesis kit (Quickchange II, Strata-

gene). Sequencing of both clones confirmed the identity of the human Nanog

cDNA wild-type (TOPOT-Nanog) and D69E mutation (TOPO-mut -Nanog). In

vitro transcription and translation were performed according to the manufac-

turer’s protocol (Promega, cat. no. L520A). TOPO-Nanog and TOPO-D69E-

Nanog plasmid 1 mg was incubated at 30�C with T7 quick master mix and

1 mM methionine plus biotin-tRNA (Promega, cat. no. L506A) in a total volume

of 50 ml. The reaction was stopped after 90 min, and aliquots frozen at

�80 C0. Biotin-labeled human hNanog and D69E-Nanog were detected after

transfer to nitrocellulose membranes with streptavidin Alexa fluor 680� (Mo-

lecular Probes, cat. no. S21378, dilution 1/10000). Protein was digested with

40 ng recombinant active caspase-3 (BD Bioscience, cat. no. 51-66281V) in a

total volume of 15 ml at pH 7.5 (6 mM Tris-Cl, 1.2 mM CaCl2, 1 mM KCl, 5 mM

DTT, and 1.5 mM MgCl2) (Laugwitz et al., 2001). The reaction product was run

on 4%–20% gradient PAGE gels (Bio-Rad), and protein was detected as pre-

viously described (streptavidin, Alexa Fluor 680 Odyssey system, LI-COR).

Nanog Proliferation Assay

Nanog and D69E-Nanog clones were plated at a density of 5000 cells into

96-well plates, incubated overnight, and then stimulated with RA for specified

times. Cells were then pulsed with methyl-3H thymidine (Perkin Elmer,

NET027) for 3 hr and harvested (Packard Filtermate harvester), and scintillation

counts were measured with the Packard Topocount-NXT Microplate Scintilla-

tion and Luminescence Counter.

Nanog Competition Assay

The inducible cell lines Nanog, D69E mutated Nanog, EGFP, and control A172

were plated and incubated over night with 1 mM doxycycline. The Nanog

inducible, D69E Nanog and A172 ESC lines were mixed with the EGFP induc-

ible cell line in a ratio of 20:80 and plated on the next day. Cells were main-

tained in ESC medium without LIF. The percentage of EGFP-positive cells

was determined with a FACScan instrument (Becton Dickinson) on days 0,

4, 8, 12, and 16 after plating.

SUPPLEMENTAL DATA

The Supplemental Data include seven figures and Supplemental Experimental

Procedures and can be found with this article online at http://www.

cellstemcell.com/cgi/content/full/2/6/595/DC1/.

http://www.cellstemcell.com/cgi/content/full/2/6/595/DC1/
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