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C-Reactive Protein–Mediated Low Density Lipoprotein
Uptake by Macrophages

Implications for Atherosclerosis

Thomas P. Zwaka, MD; Vinzenz Hombach, MD; Jan Torzewski, MD

Background—LDL and C-reactive protein (CRP) are important cardiovascular risk factors. Both LDL and CRP deposit
in the arterial wall during atherogenesis. Stranded LDL is taken up by macrophages, causing foam cell formation.
Because native LDL does not induce foam cell formation, we hypothesized that CRP may opsonize native LDL for
macrophages.

Methods and Results—Monocytes were isolated from human blood and transformed into macrophages. CRP/LDL uptake
was assessed by immunofluorescent labeling and the use of confocal laser scanning microscopy. Native LDL
coincubated with CRP was taken up by macrophages by macropinocytosis. Uptake of the CRP/LDL coincubate was
mediated by the CRP receptor CD32.

Conclusions—We conclude that foam cell formation in human atherogenesis may be caused in part by uptake of
CRP-opsonized native LDL.(Circulation. 2001;103:1194-1197.)
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Several modifications of LDL (for example, acetylated
LDL,1,2 oxidized LDL,3 and enzymatically modified

LDL4) induce foam cell formation in vitro via so-called
scavenger-receptor2–mediated pathways. However, the up-
take of native LDL by macrophages in considerable amounts
has never been demonstrated.

Recently, when inflammation was recognized as a major
mechanism in atherosclerotic lesion formation,5 the involve-
ment of the acute phase reactant C-reactive protein (CRP)
became a matter of debate. CRP is an important cardiovas-
cular risk factor6–9 and deposits in the arterial wall during
atherogenesis, colocalizing with the terminal complement
complex and foam cells.10–12 CRP upregulates adhesion
molecule expression on endothelial cells.13 It both opsonizes
biological particles14 and binds to apolipoprotein B–contain-
ing lipoproteins (LDL and VLDL) at their Ca21-dependent
phosphorylcholine binding sites.15–20 The major CRP-
receptor on human macrophages has been identified as the
low-affinity immunoglobulin receptor CD32.21 CRP-binding
to CD32 is allele-specific.22

Methods

CRP
Human CRP was purchased from Sigma. Purity and physical state
were examined as described previously.12 CRP preparations were
tested by the Limulus endotoxin assay (Sigma).

LDL Uptake Assay
CRP at 900 mg/L was coincubated with native LDL (Sigma) at 1000
mg/dL in PBS containing CaCl2 (0.132 g/L) and MgCl2 (0.1 g/L) at
room temperature for 15 minutes. The supernatant was then diluted
in DMEM/10% AB-serum to a final concentration of 240 mg/L CRP
and 250 mg/dL LDL. In control experiments, several lower CRP
concentrations (down to 1 mg/L) were used. Before use in the LDL
uptake assay, the CRP/LDL coincubate was again centrifuged at
15 000 rpm for 30 minutes to remove high molecular aggregates. A
dilution with heat-inactivated 10% AB-serum (56°C for 30 minutes)
was used as a control for a potential role of complement activation
in our experiments. After a further 15 minutes, the coincubate was
cooled to 4°C. Substitutions with PBS instead of CRP or LDL served
as controls.

Monocyte Isolation
Monocytes were isolated from heparinized blood4 and adjusted with
DMEM/10% human AB serum to a density of 1.03106 cells/mL.
Cell suspensions of 50mL per well were applied to a 4-chamber dish.
Cells were cultured for 7 days at 37°C in 5%CO2 and a medium
containing 10% AB serum, which was renewed every 2 days.
Macrophages were serum-starved for 12 hours, washed with PBS
(4°C), and incubated with CRP/LDL coincubates or controls at 4°C
for 30 minutes. The LDL uptake assay was performed by incubating
cells at 37°C for stated time intervals. To block CRP-binding to
CD32, control cells were incubated with aggregated IgG at 100
mg/mL.21 Aggregated IgG was prepared from human IgG (Sigma) by
incubation at 63°C for 30 minutes at 10 mg/mL. The phospha-
tidylinositol3-kinase inhibitor Wortmannin at 100 nmol/L, which is
known to inhibit Fcg receptor-dependent ingestion, was used as an
additional control.
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CD32 Polymorphism Analysis
For genetic analysis of CD32, genomic DNA was extracted from
monocytes using QIAmp-Kit (Qiagen) and subjected to polymerase
chain reaction using the following primers: sense, 59–TTGGATAG-
TACCTCTGAGACTG–39; antisense, 59–ACGTGAGGGCTC-
CAAGCTCT–39. Genotype was assessed by DNA-sequencing of
polymerase chain reaction products.

Flow Cytometry
Cells were stained for CD32 and the macrophage marker CD14 using
monoclonal FITC-conjugated anti-CD32 and R-phycoerythrin–con-
jugated anti-CD14, both at a 1:20-dilution (Pharmingen). Cells were
analyzed using Becton Dickinson FACSCalibur flow cytometer with
CellQuest software. Forward and side scatter was used to gate cell
population and to exclude cell debris. A minimum of 10 000
positively stained cells were analyzed. Irrelevant anti-mouse isotype-
matched antibodies were used as controls.

Immunofluorescent Staining and Analysis
Monocytes were fixed in 4% formaldehyde for 20 minutes and
permeabilized by 0.5% Triton X-100. Nonspecific binding was
blocked with PBS/2% BSA. Cells were incubated with monoclonal
anti-CRP (clone 8, Sigma) at 80mg/mL or with polyclonal goat
anti-apoB-100 (Biodesign) at 10mg/mL. Cells were incubated with
Indodicarbocyanin-conjugated anti-mouse IgG (Jackson-Immuno-
Research) at 15mg/mL or with Indocarbocyanin-conjugated anti-
goat antibody (Alexis) at 20mg/mL. Some samples were incubated
with anti-CD32 FITC-conjugated mouse monoclonal antibody
(DAKO) at 10 mg/mL or TRITC or FITC-conjugated phalloidin
(Sigma), both at 0.1 mg/mL. Finally, cells were mounted in Mowiol
(Calbiochem) and visualized under confocal laser scan microscope
(633 objective; Leica).

Results
In this study, CRP was coincubated with native LDL in the
presence of calcium,15,16and the coincubate was offered to
human macrophages expressing the heterozygous pheno-
type of CD32.21,22 Lipoprotein uptake was assessed by
confocal laser scanning microscopy. Figure 1A shows the
kinetics of LDL (apolipoprotein B-100) staining. After 30
minutes, aggregates of LDL were observed under the
ruffled macrophage membrane, indicating formation of
LDL-containing vesicles. After 60 minutes, LDL com-
plexes could be observed deeper within the cytoplasm, and
they appeared to be more disseminated, suggesting further
internalization and processing. Parallel filamentous-actin
(f-actin) staining provided evidence for cytoskeletal reor-
ganization in the region of vesicle formation. Time course
and morphology of the vesicles suggested that vesicle
formation was due to macropinocytosis.23 In contrast, no
vesicle formation was observed when cells were incubated
at identical concentrations with native LDL alone or CRP
alone. Incubation of cells with native LDL showed some
background staining for LDL after 30 minutes (Figure 1B).
Decrease in background stain after 60 minutes indicated
intracellular LDL degradation1,2.

To investigate whether CD32 is involved in vesicle
formation, we analyzed CRP and CD32 staining at differ-
ent time points after incubating cells with the LDL/CRP
coincubate (Figure 2A). Figure 2A shows that CRP colo-
calizes with clusters of CD32 on cell surfaces after 10
minutes. This figure demonstrates extensive CRP capping
on the macrophage surface, in analogy to the described
interaction of CRP with Fc-receptors on lymphoid cells.24

With further incubation, CRP/CD32 complexes become
internalized (Figure 2A). The inset shows that CD32 is
localized in the vesicle wall colocalizing with CRP to the
vesicle lumen. This phenomenon does not occur after
incubating cells with CRP alone (data not shown). Flow
cytometric 2-color analysis of anti-CD32 and anti-CD14
revealed a 82.23% stain for CD32 and CD14 (with a
11.91% background stain) before incubation with CRP/
LDL and a 23.63% stain for CD32 and CD14 (with a
7.82% background) after CRP/LDL incubation.

Finally, Figure 2B shows CRP and LDL staining 60
minutes after incubating cells with LDL/CRP coincubates.
The figure demonstrates strict colocalization of CRP and
LDL in the described vesicles. Because CRP is stained blue
and LDL is stained red, vesicles containing CRP and LDL in
colocalization are violet.

Further controls included heat inactivation of AB-serum
and incubation in the presence of aggregated IgG or Wort-
mannin (data not shown). Both heat inactivation and aggre-
gated IgG-preincubation abolished vesicle formation and
CRP/LDL uptake. Wortmannin preincubation, however,
markedly reduced but did not completely abolish vesicle
formation. Furthermore, lower CRP concentrations (down to
1 mg/L) revealed significant reductions in but did not
completely abolish vesicle formation.

Figure 1. A, Apolipoprotein B-100 stain (red) and f-actin stain
(green) after incubation of macrophages with CRP/LDL coincu-
bate. Arrows indicate LDL-containing vesicles. After 30 minutes,
vesicles can be observed under ruffled macrophage membrane.
After 60 minutes, vesicles are visible deeper within cytoplasm
and appear to be more disseminated. B, Apolipoprotein B-100
stain (red) and f-actin stain (green) after incubation of macro-
phages with LDL alone. After 30 minutes, there seems to be
some disseminated apolipoprotein B-100 stain that decreases
after 60 minutes, suggesting background uptake of LDL with
further digestion. No vesicle formation is visible.
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Discussion
In conclusion, our data describe a novel mechanism by
which foam cell formation in human atherogenesis may
occur. In contrast to the major former hypotheses on foam
cell formation in atherogenesis,1–3 our data suggest a
mechanism for LDL uptake by macrophages without a
need for biochemical modification of LDL. In our exper-
iments, the acute phase reactant CRP mediated the uptake
of native LDL. This effect was dependent on the presence
of serum and was abolished by heat inactivation of the
serum. Our finding is in line with former reports on
CRP-mediated opsonization of biological particles14 and
with a recent finding showing that CRP mediates its effects
on endothelial adhesion molecule expression only in the
presence of serum.14 Preliminary evidence from other
investigators demonstrate that CD32 may cluster with
other receptors, especially complement receptors (G.
Schmitz, MD, unpublished observations, 2000). Because
CRP is known to activate complement,10 this potentially
important issue awaits further investigation. However, the
involvement of other serum factors cannot be excluded.

Uptake of the CRP/LDL coincubate was mediated by
CD32, as unequivocally demonstrated by colocalization of

CRP, CD32, and LDL in the vesicles and by flow cyto-
metric analysis showing marked reduction of anti-CD32
binding with incubation time. FcR-dependence of vesicle
formation is further supported by competitive inhibition
through aggregated IgG. Because CRP influences reactive
oxygen production by macrophages, CRP may also facil-
itate LDL oxidation in the atherosclerotic lesion.25 The fact
that CRP accumulates in lesions10 –12suggests the presence
of higher CRP concentrations in atherosclerotic tissue than
in serum. However, CRP concentrations in the atheroscle-
rotic lesion, which is the location of foam cell formation,
are difficult to evaluate.

In view of the well-known property of CRP to opsonize
biological particles for macrophages, our finding is in line
with basic functions of the immune system. In light of the
increasing evidence for CRP being an important cardiovas-
cular risk factor, we suggest that CRP-binding to LDL in the
human arterial wall may link LDL deposition to the onset of
arteriosclerosis.
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